Line-closed Subsets of Steiner Triple Systems and Classical Linear Spaces 1

نویسندگان

  • Alan R Camina
  • Alice Ann Miller
چکیده

A proper non-empty subset C of the points of a linear space S = (P; L) is called line-closed if any two intersecting lines of S , each meeting C at least twice, have their intersection in C. We show that when every line has k points and every point lies on r lines the maximum size for such sets is r + k ? 2. In addition it is shown that this cannot happen for projective spaces PG(n; q) unless q = 2, nor can it be obtained for aane spaces AG(n; q) unless n = 2 and q = 3. However, for all odd values of r there exist Steiner triple systems having such maximum line-closed subsets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on the number of generalized partitions and some applications

We present bounds concerning the number of Hartmanis partitions of a finite set. An application of these inequalities improves the known asymptotic lower bound on the number of linear spaces on n points. We also present an upper bound for a certain class of these partitions which bounds the number of Steiner triple and quadruple systems. Recent work has extended the known numerical values for t...

متن کامل

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems

A class of Steiner triple systems is characterized. Each one is obtained as a linear completion of some ( 154 203 ) multiveblen configurations and it contains some Fano planes. MSC 2000: 51E14, 51E30

متن کامل

The embedding problem for partial Steiner triple systems

The system has the nice property that any pair of distinct elements of V occurs in exactly one of the subsets. This makes it an example of a Steiner triple system. Steiner triple systems first appeared in the mathematical literature in the mid-nineteenth century but the concept must surely have been thought of long before then. An excellent historical introduction appears in [7]. As pointed out...

متن کامل

Block-Intersection Graphs of Steiner Triple Systems

A Steiner triple system of order n is a collection of subsets of size three, taken from the n-element set {0, 1, ..., n−1}, such that every pair is contained in exactly one of the subsets. The subsets are called triples, and a block-intersection graph is constructed by having each triple correspond to a vertex. If two triples have a non-empty intersection, an edge is inserted between their vert...

متن کامل

Designs and codes in affine geometry

Classical designs and their (projective) q-analogs can both be viewed as designs in matroids, using the matroid of all subsets of a set and the matroid of linearly independent subsets of a vector space, respectively. Another natural matroid is given by the point sets in general position of an affine space, leading to the concept of an affine design. Accordingly, a t-(n, k, λ) affine design of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998